condición para desarrollar futuros estudios utilizando células madre de origen en la medula ósea como tratamiento de la enfermedad degenerativa discal vertebral.
Sin embargo el pequeño número de pacientes así como la metodología en su selección no nos permiten llegar a evidencias conclusivas acerca del efecto beneficioso del trasplante de células madre autólogas al disco intervertebral.
Nuestros resultados muestran que las células madre de origen en la medula ósea pueden ser trasplantadas al disco intervertebral de manera segura en aquellos pacientes que sufren enfermedad degenerativa lo que abre un camino a futuros trabajos en esta dirección.
Bibliografía
1- Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010; 303:1259–65.
2- Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 2009; 48:5–10.
3- Ganey TM, Meisel HJ. A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation. Eur Spine J. 2002; 11(Suppl.2):S206–14.
4- Hsieh AH, Twomey JD. Cellular mechanobiology of the intervertebral disc: New directions and approaches. J Biomechanics. 2010; 43: 137-45.
5- Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J. 2008; 17(Suppl4):S492–503.
6- Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999; 5:309-13.
7- Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 7:430-6.
8- Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410:701-5.
9- Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA. 2004; 101:11839-44.
10- Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290:1779-82.
11- Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, Iwasaki Y. Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med. 2006; 47:486-91.
12- Suarez Monteagudo C, Hernández Ramírez P, Álvarez González L, García Maeso I, Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Rest Neur Neuroscience. 2009; 27:151-61.
13- Hernández Ramírez P, Cortina L, Artaza H, Pol N, Lam RM, Dorticos E, Macías Castro C, Hernández C, Blanco A, Martínez A, Díaz F. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis. 2007; 194:e52-6.
14- Porada CD, Zanjani ED, Meida Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther. 2006; 1: 365-9.
15- Feron F. Current cell therapy strategies for repairing the central nervous system. Rev Neurol. 2007; 163(SpecNo1):3S23-30.
16- Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008; 41:94-114.
17- Rosser AE, Zietlow R, Dunnett SB. Stem cell transplantation for neurodegenerative diseases. Curr Opin Neurol. 2007; 20:688-92.
18- Ganey T, Hutton W, Moseley T, Hedrick M, Meisel H-J. Intervertebral Disc Repair Using Adipose Tissue-Derived Stem and Regenerative Cells: Experiments in a Canine Model. Spine. 2009; 34(21):2297-2304.
19- Guehring T, Nerlich A, Kroeber M, Richter W, Omlor GW. Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. Eur Spine J. 2010; 19:113–21.
20- Hee HT, Lim T, Goh JCH, Wong HK. Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. JBJ Surg B. 2010; 92(5):726-36.
21- Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials. 2008; 29:438–47.
22- Scott MW, Mork AR. Intradiscal Injection of Hematopoietic Stem Cells in an attempt to rejuvenate the Intervertebral Discs. Stem Cells and Development. 2006; 15:136–7.
23- Pfirrmann CW, Metzdorf A, Zanetti M. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001; 26:1873–8.
24- Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine. 2000, 25:2940-52.
25- Trout JJ, Buckwalter JA, Moore KC, Landas SK. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell. 2009; 14:359.
26- Trout J, Buckwalter J, Moore K. Ultrastructure of the human intervertebral disc II. Cells of the nucleus pulposus. Anat Rec. 2009; 204:307.
27- Kim KW, Kim YS, Ha KY, Woo YK, Park JB, Park WS, An HS. An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine.